TDA Progress Report 42-117

May 15, 1994

The Development and Application of Composite Complexity
Models and a Relative Complexity Metric in a

Software Maintenance Environment

J. M. Hops
Radio Frequency and Microwave Subsystems Section

J. S. Sherif
Software Product Assurance Section
and
California State University, Fullerton

A great deal of effort is now being devoted to the study, analysis, prediction,
and minimization of software maintenance expected cost, long before software is
delivered to users or customers. It has been estimated that, on the average, the
effort spent on software maintenance is as costly as the effort spent on all other
software costs. Software design methods should be the starting point to aid in al-
leviating the problems of software maintenance complexity and high costs. Two
aspects of maintenance deserve attention: (1) protocols for locating and rectifying
defects, and for ensuring that no new defects are introduced in the development
phase of the software process, and (2) protocols for modification, enhancement, and
upgrading. This article focuses primarily on the second aspect, the development of
protocols to help increase the quality and reduce the costs associated with modi-
fications, enhancements, and upgrades of existing software. This study developed
parsimonious models and a relative complexity metric for complexity measurement
of software that were used to rank the modules in the system relative to one an-
other. Some success was achieved in using the models and the relative metric to
identify maintenance-prone modules.

l. Introduction
A. Project Objectives

The primary objective of this study was to determine
whether software metrics could help guide our efforts in
the development and maintenance of the real-time embed-
ded systems that we develop for NASA’s Deep Space Net-

194

work (DSN). Generally, the systems that are developed
control receivers, transmitters, exciters, and signal paths
through the communication hardware. The most common
programming language in our systems is PL/M for Intel
8080, 8086, and 80286 microprocessors; and the systems
range in size from 20,000 to 100,000 non-commented lines
of code (NCLOC). Approximately 65 percent of the fund-

ing received in our environment is dedicated to extending
the life span of the previously developed systems; of this,
15 percent is spent on finding and fixing defects, while
85 percent is spent on adding automation features, adding
capabilities, and increasing capacity.

Our efforts have been successful in that the life spans of
our systems now range from 4 to 8 years and are increas-
ing. As support for new spacecraft becomes necessary,
these older systems are being used in new ways, thereby
increasing the importance of high-quality, defect-free, and
cost-effective enhancements to the software. Protocols and
guidance for locating and rectifying defects in the software-
sustaining environment were deemed critical, especially
with the added complications that the maintainers of the
systems are not the original developers and that there is
little or no confidence in the software documentation.

Specifically, we were looking for ways to identify which
modules should be reengineered and which modules would
need extra development and test time in order to main-
tain. The problems we face in our environment are quite
common in the industry. Software maintenance cost is
about two to four times the original development cost
[3,13,10,21]. Charette [5] emphasizes the fact that 60 to
80 percent of the total software costs are related to main-
tenance. This will likely remain so for the indefinite future
[7,11,24].

Figure 1 shows the initial cost breakdown in develop-
ing a new project (unfortunately with maintenance costs
hidden), and Fig. 2 shows the costs of software during its
life cycle, as discussed by Zelkowitz [34]. Software mainte-
nance is not what people think it is: Software maintenance
actually encompasses fixing software errors in addition to
software enhancements and adding new functions to exist-
ing systems, system conversion, training and supporting
users, and improving system performance [31-33]. Error
correction, which is often perceived as the substance of
maintenance, is only a small part of the software main-
tenance effort [8,4]. Table 1 shows the distribution of
the average time spent on various maintenance tasks for
4 years, as reported by Lientz and Swanson [19]. Note that
functional enhancement constitutes the major portion of
the time spent on software maintenance. Charette [5] dis-
cusses another reason why the cost of software is so high
and cites some statistics as reported by the Comptroller
General [6] and as shown in Table 2. It is reported that
only 2 percent of the software contracted for could work on
delivery; 3 percent could work after some rework; 45 per-
cent was delivered, but was never successfully put to use;
20 percent was used, but was either extensively reworked

or gbandoned; and 30 percent was paid for, but was never
delivered.

For the study described in this article, we took the fol-
lowing steps:

(1) Determined what the literature suggests.

(2) Developed a course of action to be tried on one of our
operational systems that would be representative of
all the others.

(3) Performed the steps and analyzed the results.

The process and results of each of these steps are de-
scribed below.

B. Suggestions from the Literature and Course
of Action

One of the earlier studies encountered pertaining to
our objectives was undertaken by Shen, Yu, Thebaut, and
Paulsen [27]. They assessed the potential usefulness of
product and process metrics in identifying components of
the system that were most likely to contain errors. Their
goal was to establish an empirical basis for the use of ob-
jective criteria in developing strategies for the allocation
of testing effort in the software-maintenance environment.
It was found that the number of unique operands, as de-
fined by Halstead [14], was the best predictor of problem
reports on modules that were reported after the initial
delivery. Additionally, simple metrics related to the num-
ber of unique operands, such as the cyclomatic complexity
(defined by McCabe [20]), also performed well. Shen et al.
concluded that these metrics are useful in finding error-
prone modules at an early stage [27].

In 1987, Kafura and Reddy [17] published the results
of their study on using software complexity metrics during
the software maintenance phase of a system. They related
seven separate metrics to the experience of maintenance
activities on medium-sized systems. Two of the results re-
ported were that the overall complexity of a system grows
with time and that the individual complexity scores of the
software modules agree well with the expert opinions of
the programmers. Their conclusion was that metrics could
form the control element in a formal maintenance method.

Harrison and Cook [15,16] discuss the decision, fre-
quently encountered by software maintenance personnel,
of whether to make an isolated change in a module or
to totally redesign and rewrite the module anew. They
developed an objective decision rule to identify modules

195

that should be rewritten rather than modified. This de-
cision rule is whether the total change in the Halstead
software science volume metric exceeds a threshold value.
This threshold value seems to be subjective since it de-
pends upon the decision maker’s risk-taking propensity
and experience and since it must be tuned for a partic-
ular environment.

Lennselius, Wohlin, and Vrana [18] discuss the possi-
bility of using complexity metrics to identify error-prone,
and thus maintenance-prone, modules. They suggest that
a module whose complexity lies at least one standard de-
viation above the acceptable mean of complexity of the
project may be considered to be a maintenance-prone
module. The authors, however, emphasize that metrics
cannot replace the decision-making process of software
managers.

Rodriguez and Tsai [23] use discriminant analysis to de-
velop a methodology to evaluate software metrics. They
suggest that when classifying units of software as either
complex or normal, more attention is usually paid to the
complex group to either redesign it or test it more thor-
oughly. Their methodology is based on the assumption of
normal distribution and homogeneity of variances of the
two groups. The authors consider 13 metrics depicting
Halstead’s software science metrics, McCabe complexity
metrics, and NCLOC metrics. They conclude that these
metrics are correlated.

Stalhane [29] discusses how to estimate the number of
defects in a software unit from various software metrics
and how to estimate the reliability of the same software.
The author also concludes that complexity increases as
the size of code increases. Stalhane asserts that misunder-
standing the specifications will increase with the specifica-
tion complexity and that complexity may be transferred
to the code and thus lead to maintenance-prone complex
code and complex modules.

Munson and Khoshgoftaar [21] employ factor analytic
techniques to reduce the dimensionality of the complexity
problem space to produce a set of reduced metrics. The re-
duced complexity metrics are subsequently combined into
a single relative complexity measure for the purpose of
comparing and classifying programs. In particular, the
relative complexity metric can be seen to represent the
complexity of a particular software module at a particular
level of system release. The authors investigate McCabe
complexity metrics, Halstead software science metrics, and
NCLOC metrics. The comparison of complexity is again
of a relative and subjective nature.

196

Binder and Poore [2] investigate the possibility of in-
cluding the number of comments in the code as a variable
in determining the quality of the code. They assert that
comments only contribute to quality when they are needed
and meaningful. The authors suggest a software quality
measure called the “LB-ratio,” which is defined as the ra-
tio of the number of operators to the sum of the number of
operands and the number of comments. The authors agree
that their experiments with the LB-ratio need additional
work and refinement since including the concept of mean-
ingful comments in the formula seems to be problematic
and subjective at best.

The following suggestions were deduced from these
sources:

(1) An estimate of errors and reliability can be deter-
mined from software product metrics [20,27,29].

(2) Software product metrics could be used to find error-
prone modules and could form the control element in
a formal software maintenance methodology [15-18].

(3) The software product metrics that may be consid-
ered include all of Halstead’s software science met-
rics, McCabe’s complexity metric [14,23,27], and
NCLOC [21].

(4) Factor analysis can be used to identify those software
measures that are highly and significantly related to
all other measures. This economy of description will
facilitate the analysis of software complexity [21].

(5) Comments in the code contribute to the quality of
software [2].

We therefore took the following actions:

(1) Determined the Halstead software science, McCabe
complexity, NCLOC, and LB-ratio from sequential
releases of a representative software system.

(2) Performed factor analysis on the metrics from the
software modules to determine the unique dimen-
sions represented by the metrics.

(3) Proposed a model to calculate a relative metric.

(4) Determined if this metric can identify maintenance-
prone modules in the software by using the mean-
plus-one standard deviation as the relative metric
cut-off value.

Il. Method, Analysis, and Results
A. Representative System and Metrics Collection

1. Nature of Software. We analyzed the source
program in the very long baseline interferometry (VLBI)
receiver controller (VRC) software system by using factor
analysis for 16 software measures. The source program is
a real-time embedded system in the receiver—exciter sub-
system of NASA’s DSN. It serves as a communication in-
terface to VLBI subsystems and configures and monitors
the status of the narrow-channel bandwidth VLBI receiver
assembly. Three releases of the system software were an-
alyzed: OP-B (222 modules), OP-C (224 modules), and a
draft version of OP-D (235 modules). These were used as
a representative maintenance project in this study. The
source code for these three releases was originally written
in PL/M but was later converted to C using the PLC86
conversion program (from Micro-Processor Services).

2. Software Metrics and Measures. Software met-
rics are quantitative measures of certain characteristics of
a development project that can be valuable management
and engineering tools. Software metrics can be used to
achieve various project-specific results, such as predicting
source-code complexity at the design phase; monitoring
and controlling software reliability and functionality; pre-
dicting cost and schedule; and identifying high-risk mod-
ules in a software project [28].

The 16 software measures that were used to analyze
the VRC software are given in Table 3. The first eight
measures belong to the Halstead software science family of
software complexity measures. Halstead [14] uses a series
of software science equations to measure the complexity
of a program based on the lexical counts of symbols used.
Generally, the measurements are made for each module,
and the total measurements of the modules constitute the
measurement of the program. Halstead’s metrics become
available only after the coding is done, and therefore can
be of use only during the testing and maintenance phases.
Although Halstead’s metrics are useful in determining the
complexity of programs, their weaknesses are that they
do not measure control flow complexity and have little
predictive value.

Measures 9 and 10, i.e., VG; and VG3, belong to Mec-
Cabe and were adapted from the mathematical concepts
of graph theory. McCabe cyclomatic complexity metric
VG, is a measure of the maximum number of linearly in-
dependent circuits in a program control graph. The pri-
mary purpose of this metric is to identify software modules
that will be difficult to test or maintain, as explained by

McCabe [20]. The value of the McCabe metric is avail-
able only after the detailed design is done. Although the
McCabe metric is very useful for measuring control flow
complexity, its weakness is that it is not sensitive to pro-
gram size; for example, if programs of different sizes are
composed exclusively of sequential statements, then they
may have the same cyclomatic number.

Measures 11-15 deal with the size of the program or
the number of lines. Although many researchers do not
find this measure as appealing, Boehm [3] points out that
no other metric has a clear advantage over NCLOC as
a metric. It is easy to measure, is conceptually familiar
to software developers, and is used in most productivity
databases and cost estimation models.

Measure 16, the LB-ratio, is defined by Binder and
Poore [2] as the ratio of the number of operators to the
sum of the number of operands and the number of com-
ments. It appears to capture the idea of distinguishing
between meaningful comments in the code and just com-
ments in general. The weakness of this metric is its re-
liance on defining the number of meaningful comments,
which seems to be more subjective than quantitative.

B. Analysis of Data, Models, and Validation

The 16 software measures of the three releases of the
VRC code, OP-B, OP-C, and draft OP-D, were analyzed
using factor analysis, correlation, analysis of variance, and
regression analysis. Table 4 shows the number of modules
and the mean value per module for each of the 16 measures.
Figures 3-5 show the correlation matrix of the 16 mea-
sures for the three releases. The data show a high degree
of correlation. Except for the LB-ratio measure, the re-
maining 15 measures are highly correlated. It can be seen
that the Halstead volume metric (V), the McCabe cyclo-
matic complexity metric (VG1), and the NCLOC metric
are highly and significantly correlated, while the LB-ratio
metric is not. These results agree with those of other re-
searchers, such as Ramamurthy and Melton [22}, Gill and
Kemerer [12], Samadzadeh and Nandakumar [25], Basili
and Hutchins [1], Evangelist [9], and Kafura and Reddy
[17.

The factor analysis matrix is shown in Table 5. All
measures except the LB-ratio are loaded on factor 1, and
thus there is no cross-loading. This is a desired result,
since cross-loading on many factors makes the interpre-
tation of the result ambiguous. The analysis of variance
of the three sets of releases did not show any significant
difference at the level of significance of 0.05. This means
that, on the average, the values of, say, the McCabe cyclo-
matic complexity metric (VG1) of the three releases are

197

not significantly different at alpha of 5 percent. The same
is also true for the other 15 measures.

Regression analysis had been used to develop models
of relationships of the most interrelated measures. These
are the Halstead volume metric (V), the McCabe cyclo-
matic metric (V' G1), and the non-commented lines of code
(NCLOC) metric, as discussed next.

1. Factor Analysis Discussion. Three releases of
software were analyzed by factor analysis to show the ex-
istence of meaningful relationships among known software
complexity measures. The analysis shows the number of
factors where software complexity measures tend to load
high or low, and also the percentage of the variability ex-
plained by each factor. This research also shows the matrix
of correlation summarizing the relationships among the 16
software complexity measures for each release.

Factor analysis of the three releases of software had
shown that the first 15 measures of complexity are closely
related to some measure of similarity and are consequently
all interrelated. However, the 16th complexity measure
(LB-ratio) does not seem to be typical of the other 15
measures, and thus it is unlike the rest of the data set.
The 3 releases show 2 factors that concisely state the pat-
tern of relationships within the 16 measures. However,
measures 1-15 load most strongly on the first factor with
explained variability of 90 to 91 percent, while the sec-
ond factor displays less interesting patterns with loading
of 9 to 10 percent. Factor analysis had also shown that
three complexity measures, the McCabe cyclomatic com-
plexity metric (VG;), the Halstead volume metric (V),
and (NCLOC), are highly and strongly related. There-
fore, in order to achieve an economy of description, these
three measures are considered to give a strong similarity
and representation of all the 15 measures.

The correlation matrix for each release of the software
also shows that the first 15 complexity measures are re-
lated, while the LB-ratio measure is not related or inter-
related to any of the other 15 measures.

Analysis of variance does not show any significant dif-
ference between the three releases at the level of signif-
icance of 5 percent. This means that as the software
evolves through its releases, the interrelationships between
the complexity measures seem to be preserved. However,
we should note that without normalization to size, adding
on to a program will make a more complex program. This
seems to agree with the findings of other researchers, as

198

discussed by Valett and McGarry [30], Harrison and Cook
[15], and Schneidewind [26].

Since factor analysis techniques showed that the first
15 software measures are closely related to some measure
of similarity, and since 3 of these measures, the McCabe
cyclomatic complexity metric (VGy), the Halstead volume
metric (V), and the NCLOC metric, are highly and signifi-
cantly related, they are considered to give a strong similar-
ity and representation of all 15 measures. This economy of
description made it appealing to develop a set of parsimo-
nious models for software complexity measurements using
data from the three software releases. The five composite
models together with their coefficients of determination
(R?) are shown in Table 6.

Statistical analysis, model back testing, and model test-
ing with independent segments of software are used for
validation of the composite models and ascertaining their
degree of accuracy. The developed models had shown a
high degree of accuracy in predicting software complexity,
and thus they can serve as a baseline for other software
projects in identifying software modules with high com-
plexity (maintenance prone), so that actions can be taken
before their release to users.

2. Back Testing of Models. The five composite
complexity models shown in Table 6 were checked with
actual data from the three releases, OP-B, OP-C, and
OP-D. Table 7 and Fig. 6 show the actual average values
of the dependent variables (V) and values predicted by
the first three models. Table 8 and Fig. 7 show the ac-
tual average values of (V') and values predicted by models
4 and 5. It can be seen that the difference in predicting
(VG1) by the first three composite models ranges from 3.2
to 10.6 percent below the actual average value of (VGy),
as calculated by the McCabe cyclomatic complexity met-
ric. Also, the difference in predicting (V') by models 4 and
5 ranges from 1.2 to 1.3 percent above the actual average
value of (V), as calculated by Halstead’s volume metric.

3. Testing the Five Composite Models by Exter-
nal Check. The five composite complexity models were
tested against four independent segments of software with
characteristics as shown in Table 9. A sample calculation
of actual average values of (V' G1) and values predicted by
model 1 for the four segments of software is shown in Ta-
ble 10. The summary of the actual grand average values
of (VG;) and (V) and their values, as predicted by models
1, 2, and 3 and models 4 and 5, respectively, for the four
segments of software, is shown in Tables 11 and 12 and

Figs. 8 and 9. It can be seen that the difference in predict-
ing (VG1) by the first three composite models ranges from
17.3 percent below to 0.7 percent above the actual aver-
age value of (VG;). Also, the difference in predicting (V')
by models 4 and 5 is 9.7 percent above the actual average
value of (V') for the four segments of software.

C. Parsimonious Model and Relative Complexity

Since the five complexity models developed in this
study show direct relationships between (VGi) and (V)
and also (NCLOC), we chose the third model,

<VG1> = 0.786 + 0.0013(V) + 0.0976(NCLOC)

as a representative model for estimating the value of

(VG), given the measured values of (V') and (NCLOC).

1. Development of the Relative Complexity
Metric. We propose to capture the total complexity of
a program based on its control flow complexity, the lex-
ical counts of symbols used, and the program size. In
essence, a complexity metric that accounts for a program
total complexity due to volume and control flow and nor-
malized by the number of lines of code would present a
relative complexity metric that is more useful to consider
for detecting maintenance-prone programs. The relative
complexity metric (RCM) will be derived for each module
from the measured value of (V), the estimated value of
(VG1) from model 3, and normalized by the module lines
of code. The RCM for a module is

_ <VG;>+V
(RCM)'“(NCLOC)

2. Analysis of the Three Releases Using the Rel-
ative Complexity Metric. The RCM was used to an-
alyze the modules of the three releases, as shown in Ta-
ble 13. Note that, as reported by Kafura and Reddy [17],

the RCM has grown with each release, from a 2799 total
inOP-B to a 3470 total in the draft of OP-D.

Using the criterion of the mean relative complexity
value plus one standard deviation as a cut-off value for
acceptable modules, we can identify those modules that
can be considered as outliers, or maintenance-prone mod-
ules. Results for the three releases are given in Table 14.

In order to determine whether the modules above the
cut-off value were more at risk to be modified for enhance-
ment or fixes than modules below the cut-off value, the
transitions between the releases were examined. The re-
sults appear in Table 15. Of the 33 modules over the
cut-off value of RCM in OP-B, 40 percent were actually
modified in order to implement OP-C. Of the 36 modules
in OP-C over OP-C’s RCM cut-off value, 50 percent were
actually modified to implement the draft version of OP-D.

Although the cut-off value seems to evenly divide the
modules that were actually modified, the modules over the
cut-off value for each release were more likely to be changed
than the modules below the cut-off value. The RCM was,
therefore, able to identify maintenance-prone modules.

lll. Discussion and Conclusion

Given that a metric that measures software complexity
should prove to be a useful predictor of software mainte-
nance costs, it is recommended that modules that show a
high order of complexity within a release be looked upon as
modules with a propensity to become maintenance prone
after release and delivery to users. It is imperative that
a maintenance-prone module be improved, enhanced, or
simplified into two or more modules before final delivery.
The composite complexity models and the relative com-
plexity metric developed in this study can be considered
as a baseline for comparison with other projects and may
serve as a set point for simplifying and reducing complex-
ity of developed software.

Acknowledgments

The authors would like to express their sincere thanks to Dr. Harry Detweiler,
Manager, Dr. William J. Hurd, Deputy Manager, and Paul A. Willis, Supervi-
sor, Radio Frequency and Microwave Subsystems Section; Dr. Robert C. Taus-
worthe, Chief Technologist, Information Systems Division; and Dr. Donald S. Re-
mer, Telecommunications and Data Acquisition Planning, for comments and sug-

gestions that greatly improved this article.

199

200

References

[1] V. R. Basili and D. H. Hutchins, “An Empirical Study of a Synthetic Complexity
Family,” IEEE Transactions on Software Engineering, vol. 9, no. 6, pp. 664-672,
November 1983.

[2] L. H. Binder and J. H. Poore, “Field Experiments With Local Software Quality
Metrics,” Software Practice and Ezperience, vol. 20, no. 7, pp. 631-647, July
1990.

[3] B. Boehm, Software Enginecering Economics, Englewood Cliffs, New Jersey:
Prentice Hall, 1981.

[4] B. Boehm and P. Papaccio, “Understanding and Controlling Software Costs,”
IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1462-1477,
October 1988.

[5] R. N. Charette, Software Engineering Environment, New York: McGraw-Hill,
Inc., 1986.

[6] Comptroller General, Contracting for Computer Software Development, General
Accounting Office Report, FGMSD-80-4, GAO, 1979.

[7] B. Curtis, S. Sheppard, P. Milliman, M. Borst, and T. Love, “Measuring the
Psychological Complexity of Software Maintenance Tasks With the Halstead and
McCabe Metrics,” IEEE Transactions on Software Engineering, vol. 5, pp. 96—
104, March 1979.

[8] S. Dekleva, “Software Maintenance: Any News Besides the Name,” The Software
Practitioner, vol. 3, no. 3, pp. 5-8, March 1993.

[9] W. M. Evangelist, “Software Complexity Metric Sensitivity to Program Structure
Rules,” Journal of Systems and Software, vol. 3, no. 3, pp. 231-243, March 1983.

[10] R. E. Fairley, Software Engineering Concepts, New York: McGraw—-Hill, Inc.,
1985.

[11] V. R. Gibson and J. A. Senn, “System Structure and Software Maintenance
Performance,” Communications ACM, vol. 32, no. 3, pp. 347-358, March 1989.

[12) G. K. Gill and C. F. Kemerer, “Cyclomatic Complexity Density and Software
Maintenance Productivity,” IEEE Transactions on Software Engineering, vol. 17,
no. 12, pp. 1284-1288, December 1991.

[13] R. L. Glass, Software Maintenance Handbook, Englewood Cliffs, New Jersey:
Prentice Hall, Inc., 1981.

[14] M. Halstead, Elements of Software Science, New York: Elsevier North Holland,
Inc., 1977.

[15] W. Harrison and C. Cook, “A Micro/Macro Measure of Software Complexity,”
The Journal of Systems and Software, vol. 7, no. 2, pp. 213-219, August 1987.

[16] W. Harrison and C. Cook, Insights on Improving The Maintenance Process
Through Software Measurements, Naval Ocean Systems Center Report TR 90-4,
N66001-87-D-0136, 1990.

[17] D. Kafura and G. R. Reddy, “The Use of Software Complexity Metrics in Soft-
ware Maintenance,” IEEE Transactions on Software Engineering, vol. 13, no. 13,
pp. 335-343, March 1987.

[18]

[19]
20]

[21]

22]

[23]

[24]

[25)
[26]

27}

(28]

29]

(30]

(31]

[32]

[33]

(34]

B. Lennselius, C. Wohlin, and C. Vrana, “Software Metrics: Fault Content Es-
timation and Software Process Control,” Microprocessors and Microsystems,
vol. 11, no. 7, pp. 365-375, September 1987.

B. P. Lientz and E. B. Swanson, Software Maintenance Management, Reading,
Massachusetts: Addison-Wesley, 1990.

T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engi-
neering, vol. 2, no. 4, pp. 308-320, December 1976.

J. C. Munson and T. M. Khoshgoftaar, “Application of a Relative Complexity
Metric for Software Project Management,” Journal of Systems and Software,
vol. 12, no. 3, pp. 283-291, July 1990.

B. Ramamurthy and A. Melton, “A Synthesis of Software Sciences Measures and
the Cyclomatic Number,” IEEE Transactions on Software Engineering, vol. 14,
no. 8, pp. 1116-1121, August 1988.

V. Rodriguez and W. T. Tsai, “Evaluation of Software Metrics Using Discrimi-
nant Analysis,” Proceedings of the Eleventh Annual International Computer Soft-
ware and Applications Conference, Tokyo, Japan, pp. 245-251, October 1987.

H. D. Rombach, “A Controlled Experiment on the Impact of Software Structure
on Maintainability,” JEEE Transactions on Software Engineering, vol. 13, no. 3,
pp. 344-354, March 1987.

M. H. Samadzadeh and K. Nandakumar, “A Study of Software Metrics,” Journal
of Systems Software, vol. 16, no. 3, pp. 229-234, November 1991.

N. F. Schneidewind, “Methodology For Validating Software Metrics,” IEEE
Transactions on Software Engineering, vol. 18, no. 5, pp. 410-422, May 1992.

V.Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying Error-Prone
Software—An Empirical Study,” IEEE Transactions on Software Engineering,
vol. 11, no. 4, pp. 317-323, April 1985.

Y. S. Sherif, E. Ng, and J. Steinbacher, “Computer Software Development: Qual-
ity Attributes, Measurements and Metrics,” Naval Research Logistics, vol. 35,
no. 1, pp. 425-436, January 1988.

T. Stalhane, A Discussion of Software Metrics as a Means for Software Reliabil-
ity Evaluation, Report PB89-210322, U.S. Department of Commerce, National
Technical Information Service, 1988.

J. D. Valett and F. E. McGarry, “A Summary of Software Measurement Expe-
riences in the Software Engineering Laboratory,” The Journal of Systems and
Software, vol. 9, no. 2, pp. 137-148, February 1989.

I. Vessey and R. Weber, “Some Factors Affecting Program Maintenance: An
Empirical Study,” Communications ACM, vol. 26, no. 2, pp. 128-134, February
1983.

S. Wake and S. Henry, “A Model Based on Software Quality Factors Which Pre-
dicts Maintainability,” Proceedings of the Conference on Software Maintenance,
Phoenix, Arizona, pp. 382-387, October 24, 1988.

S. S. Yau and J. S. Collofello, “Some Stability Measures for Software Mainte-
nance,” IEEE Transactions on Software Engineering, vol. 6, no. 6, pp. 545-552,
November 1980.

M. V. Zelkowitz, A. C. Shaw, and J. D. Grannon, Principles of Software Engi-
neering and Design, Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1979.

201

202

Table 1. Percentage of time spent on various maintenance tasks.

Maintenance tasks

Percentage of time spent

1977 1985 1987 1990
Enhancements 59 44 41 43
Corrections 22 15 18 16
Supporting users NA? 21 12 12
Reengineering NA NA 10
Adaptations 8 9
Documentation NA 6
Tuning NA 3
Evaluating requests NA NA NA
Other 3 2 1

2 Not applicable.

~ Table 2. Comptroller General statistics on
delivered software.

Quality of
software delivered

Percentage of
software delivered

Could work on delivery

Could work after some rework

Never successfully put to use 45
Extensively reworked 20
Useless 30
Total 100

Table 3. Software measures used to analyze the VRC software.

Ir\:llf;sbu:: Measure Measure definition

1 ni Number of unique operators

2 no Number of unique operands

3 Ny Number of total operators

4 Ny Number of total operands

5 N Length (N1 + N2)

6 N Estimated length = [n1(log,(n1)) + n2(logy(n2))]

7 14 Volume = (N)log,(n) = (N1 + N2)log,y(n1 + n2)

8 E Effort = V/[(2/n1)(n2/N2))

9 VG, McCabe cyclomatic complexity (number of decisions + 1)
10 VG2 Extended complexity (decisions + ANDs + ORs +1)
11 Loc Lines of code (includes blank and comment lines)

12 B/C Number of blank lines + number of comment lines
13 <> Number of executable semicolons

14 SP Average maximum lines between variable references
15 NCLOC Non-commented lines of code = LOC — B/C

16 LB-ratio [N1/(N2 + B/C)]

Table 4. OP-B, OP-C, and OP-D modules and the mean values of

the 16 measures.

Measure OP-B (222 OP-C (224 OP-D (235
number Measure modules) mean modules) mean modules) mean
1 n1 12 12 13

2 ny 12 12 15

3 Ny 70 75 87

4 N, 42 44 52

5 N 113 119 140

6 N 103 110 126

7 \%4 704 721 844

8 E 53,781 58,198 61,715

9 VG 4 4 5
10 VG, 5 4 5
11 Loc 73 78 83
12 B/C 43 46 49
13 <> 12 13 15
14 SP 5 5 6
15 NCLOC 30 31 34
16 LB-ratio 1 1 1

203

Table 5. The factor matrix for the 16 measures of OP-C, OP-B, and OP-D.

Measure OP-B OP-C OP-D
Measure

number Factor 1 Factor 2 Factor1 Factor 2 Factor1 Factor 2

1 n1 0.78 -0.17 0.79 —0.12 0.78 -0.17
2 N 0.94 —0.02 0.94 —-0.02 0.93 —-0.03
3 M 0.97 0.10 0.98 0.83 0.97 0.08
4 N, 0.97 0.06 0.97 0.04 0.96 —0.05
5 N 0.98 0.09 0.98 0.07 0.97 0.07
6 N 0.91 -0.01 0.96 —0.00 0.96 —0.01
7 14 0.96 0.14 0.97 0.09 0.96 0.09
8 E 0.89 0.22 0.90 0.15 0.88 0.15
9 VGy 0.94 0.09 0.95 0.08 0.93 0.10
10 VG2 0.77 0.12 0.95 0.07 0.93 0.10
11 Loc 0.94 —0.25 0.96 -0.17 0.95 -0.19
12 B/C 0.61 —0.64 0.72 ~0.50 0.70 —-0.53
13 <> 0.97 0.03 0.97 0.04 0.97 0.06
14 SP 0.70 -0.05 0.60 —-0.01 0.72 0.04
15 NCLOC 0.98 0.05 0.98 0.05 0.98 0.05
16 LB-ratio —-0.03 0.83 -0.01 0.92 —-0.02 0.90
Percentage 90 10 91 9 91 9
of explained
variability

Table 6. Five composite complexity models and their coefficients

of determination.

rll\l/f:r?::r Model deter?n?ifti)jl,tpfrcent
1 <VG1> = 1.48+0.005(V) R?2 =96
2 <VG;> = 0.510 + 0.136(NCLOC) R? =96
3 <VG1> = 0.786 4+ 0.0013(V) + 0.0976(NCLOC) R? =96
4 <V> = —206+29.5(NCLOC) R? =99
5 <V> = —210+8.7(VG1) + 28.3(NCLOC) R? =99

204

Table 7. Summary of actual average values of (VG1) and values predicted by models 1, 2, and 3.

(V) value
Delta, Error percentage,
Model Release
Actual, (A) Predicted, (P) (4) - (P) delta/(A)

1 OP-B 4.45 5.00 —-0.55 —-12.40
OP-C 4.53 5.09 -0.56 —12.40

OP-D 5.30 5.70 -0.40 —-7.50

Grand average 4.76 5.26 —0.50 —10.60
2 OP-B 4.45 4.59 -0.14 -3.10
OP-C 4.53 4.86 -0.33 -7.30

OP-D 5.30 5.27 -0.03 0.60

Grand average 4.76 4.91 -0.15 -3.10
3 OP-B 4.45 4.62 -0.17 —3.80
OP-C 4.53 4.84 -0.31 —6.80

OP-D 5.30 5.30 —0.00 0.00

Grand average 4.76 4.92 -0.16 -3.40

Table 8. Summary of actual average values of (V) and values predicted by models 4 and 5.

(V) value

Model Rel Delta, Error percentage,
ode elease
Actual, (A) Predicted, (P) (4) - (P) delta/(A)
4 OP-B 704 679 +25 +3.6
OP-C 722 738 —-16 —-2.2
OP-D 845 826 +19 +2.2
Grand average 757 748 +9 +1.2
5 OP-B 704 678 +26 +3.7
OP-C 722 735 -13 -1.8
OP-D 845 826 +19 +2.2
Grand average 757 746 -10 +1.3

205

Table 9. Characteristics of four independent segments

of software.
Segment Number of Actual average value
number modules
VG, v NCLOC

1 16 16.4 3343 102

2 16 17.9 4016 139

3 50 8.16 1823 64

4 55 11.10 2212 71

Table 10. Sample calculation of actual average values of (VGy) and values predicted
by model 1 for segments 1-4.

(V) value

Delta, Error percentage,
Model Segment
Actual, (A) Predicted, (P) (4) - (P) delta/(A)
1 1 16.40 18.19 -1.79 —-10.9
2 17.90 21.56 -3.66 —-20.4
3 8.16 10.59 —2.03 —24.4
4 11.10 12.54 —1.44 -13.0
Grand average 13.39 15.72 -2.33 -17.3

Table 11. Summary of actual grand average values of (VG1) and values predicted by
models 1, 2, and 3 for segments 1-4.

(VG1) grand average value

Delta, Error percentage,
Model Segment
Actual, (A4) Predicted, (P) (4) - (P) delta/(4)
1 1-4 13.39 15.57 -2.33 -17.3
1-4 13.39 13.31 +0.08 +0.6
3 1-4 13.39 13.48 -0.09 +0.7

206

Table 12. Summary of actual grand average values of (V) and values predicted by
models 4 and 5 for segments 1-4.

(VG1) grand average value

Delta, Error percentage,
Model Segment
Actual, (4) Predicted, (P) (4) - (P) delta/(A)
4 1-4 2848 2570 +278 +9.7
1-4 2848 2571 +277 +9.7

Table 13. Analysis of three software releases using the relative complexity metric.

Relative complexity
Total number

Release of modules Total Maximum Minimum Median Mean Sta'l_ld?‘rd
deviation
OP-B 222 2799 45 0.4 10.9 12.6 10.0
OP-C 224 2837 45 0.4 10.9 12.7 9.6
OP-D 235 3470 49 0.4 12.2 14.8 11.3

Table 14. Cut-off values of the three software releases.

Number of Percentage of

Total number (RCM) modules exceeding modules over
Release of modules cut-off value (RCM) (RCM)
cut-off value cut-off value
OP-B 222 22.6 33.0 15.0
OP-C 224 22.3 36.0 16.0
OP-D 235 26.1 35.0 15.0
Table 15. Analysis of transitions between the three software releases.
Percentage of Percentage of all
T . Number of (RCM) modified modules modules over cut-off
ransition modules modified cut-off value over cut-off value that were
value actually modified
From OP-B to 13 22.6 46 40
OP-C
From OP-C to 38 22.3 47 50
OP-D

207

208

SPECIFICATION
10%

REQUIREMENTS
10%

INTEGRATION
TEST
20%

MODULE
TEST
25%

Fig. 1. The Initlal cost breakdown In developing a new project.

MODULE TEST 8% INTEGRATION TEST 7%

CODE 7%
DESIGN 5%
SPECIFICATION 3% -

REQUIREMENTS 3%

MAINTENANCE
67%

Fig. 2. The cost of software during its life cycle.

‘g-dO 40} Sainsesw 9| Jo Xujew uoned10) ¢ *Bid

. : : : . 0 SSLS0 SL090
. : : 0 0ISSO ISTBO 0099'0 1198°0 90660 €ZLL : s
00 TEE60 ISLBO SYPRO 10000 1020°0 ST9L0 688L0 : 100 ‘- I8110°0 6L000°0- €S610°0 BLLEO'O- 99PEOC-
: ‘0 66SSI'0- LEOZO'O- LOBIO'0 €TOYOO 99¥10°0 69620°0-
00000'T 9900°0- 090100 €2€10°0 L9GECTO- o00s 1000
. . . : : 0
) : . 0 10000 10000 10000 10000 10000 1000 .)
26€6°0 00 10000 100070 10000 10000 10000 10000 10 . . 1860 v6YL6'0 €3BL60 9LPIEO TVOEL'O
. ‘0 TL6T6D TEIBL'O 60SS6'0 SOSIE0 $96960 (21680 vO
99500°0- 00000'1 6£789°0 886560 ¥S69SO TL oo To00o
.) : . ‘0 1000°
4) : ‘0 10000 10000 10000 10000 10000 10000) :
5L80 1000°0 00 10000 1000°0 1000°0 %%m.ooo 2%%% LIT6Y'0 100850 o0rLp'0 16Z29°0 L6119°0 TT9TY0 TE9E90 6291L0
090100 6€Z89°0 00000°1 STISL'O 168E¥'0 969590 0 10000 10000
: : : 0 10000 10000 10000 10000 10000 1000°0 ; .
o egeoy0 10000 o poks —_80 ° w:%ow ° m“&omwo 69868°0 €0ZE60 noggR’0 IT096'0 S69S6'0 TELS6'O0 ¥89L6'0 IEIL'O
€Z£10°0 886560 STISL'O 00000'I 689950 8¥106°0 10000 10000 10000 10000 1000°0
: . i . . . : 1000°0 ‘ .
10000 10000 10000 10000 00 10000 10000 10000 10000 10000 90SLS'0 CELES'O €LSIS'O LIGIS'O ZEOSS'O €VO6S°O
L9GEC'0- ¥SEIS'0 16BEV'D 689950 00000'I 1ZZE8'O THEIE'O TSEBY'O 9SOLE'D GIELYD
. . . . ‘0 1000°0 1000'0 100070 1000°0
1020'0 1000'0 10000 1000°0 1000°0 00 10000 10000 10000 1000°0 Smn%%o oono_%mo 11160 85268'0 SOLLB'O €ZLSL'O
66S51°0- TL6Z6'0 969590 BYIO6'0 1ZZE'0 00000 I£SL90 68098°0 96SBLO 609980
: . : 0 10000
. . : : . . . : 10000 10000 10000 10000 10000 ;
8T9L°0 10000 10000 1000°0 10000 1000°0 00 10000 100070 10000 Z6v90 OLIZLO MEZILD 9EO1L0 WHIEL0 $EL9SO
LEOTO'0- TEZBL'O 6ESBS'O BKLOL'O TVEZEC'O 1CSLOD 000001 6SERL'0 STO69°0 LBLEL'O
:) : . - ‘0 10000 10000 10000 1000°0
688L°0 10000 10000 1000°0 10000 10000 1000°0 00 10000 10000 oSc_%mo 0 §-~%ﬁ% 9680 GOCEE0 6VTEBO E669L°0
LOBIO'0 60SS6'0 OLE9L'O £SSZ6'0 TSEBY'0 68098'0 6SEBL'O 000001 bSHES'O CETI60
01SS'0 10000 10000 10000 10000 10000 10000 1000°0 00 10000 10000 10000 10000 10000 10000 10000
FCOPO'0 SOSI6'0 LTI6K'O 698SBD 959LC0 96SBL'O 10690 bSPEE0 00000 Eczeed £S86L°0 SIGE6'0 0S606'0 BTIS6'0 BEYBL'O OESYSO
1878°0 10000 10000 1000°0 10000 10000 10000 10000 10000 00 10000 10000 10000 1000°0 10000 1000°0
FOPI0 $9696°0 100850 COIE6'0 61ELYO 609980 L8L6LO CETI6D £57S60 000001 141060 LLTB6'0 €9€L6'0 9LIB6'0 £LZI6'0 85090
00990 10000 10000 10000 10000 10000 10000 10000 10000 100070 00 10000 10000 10000 10000 1000°0
69620°0" LZI6B0 SOLLY'O 096880 90SLS'O $38SBO LZ6v9D 96990 £6861 [PLO6'0 000001 #1160 €¥TC60 16060 781960 £21zL
(1980 10000 10000 1000°0 10000 10000 10000 10000 10000 1000°0 1000°0 00 10000 10000 10000 1000°0
s OIS0 162290 720960 £6LES0 OST06'0 ONIZLD HIZEO SI6L60 Lirgerd PLIZEO 000001 LEV66'0 108660 £ETZ60 ¥S00L'0
Sowwa.o 0 10000 1000 10000 10000 10000 10000 10000 10000 10000 10000 1000°0 00 10000 10000 10000
O VPO 61190 §69560 €16950 M1lig0 seziso YE9B'0 0S606'0 £9CL6'0 £VIE6'0. LEY66'0 00000l 0BSESD £90€6'0 550890
mwaa_wﬁ.o 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000
O BBL60 9290 CeLs60 L16IS0 szes0 ororLu COLLE'0 8ZIS6'0 901860 16060 108660 085860 000001 Gy 160 z80L°0
:Mnn..w.o 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000
0 SLYIEO 2990 ve9E6'0 zcoRS'O s0uL8'0 el B0 6VIEBO BCKIL'O CLZI60 81960 £62260 £90c6 SsTigo 00000'1 §0ZLL°0
8.&%90 10000 10000 10000 1000°0 10000 10000 10000 10000 10000 10000 10000 10000 10000 1000°0 00
O TR0 62910 IE1900 £50650 2510 veroco €66VL'0 0CBYS'O 850590 €212 vSOOL'0 $5089°0 zemoro SOZLL'O 00000°1
L L:p] S0IN gs) o8 501 (7278 1DA | A AN N N IN 28]

ye1

JO07IN

ds

¥o

ol |

I0A

19A

AN

IN

a:]

g

209

*9-d0 10} SaINSesW g| JO Xujew uofneiasio) v "big

00 »pL80 SEPLO LSLLO 10000 11900 081L0 L¥OL'O L8250 09L90 €8L60 ILLO 96880 €vILO 06LL0 L6ESO
000001 790100 861200 bl6100 OP6ICO- 9€STI0- 9ZvZ00 OvSZO0 1€THO0 808200 7BI000- €¥610°0 €£600C 0900 S$8810°0- 611v00- HE1
vrL80 00 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000
790100 000001 86LZS0 282560 911890 B8LIS60 OCIS6'0 SISS6'0 1€L€60 BIS860 Z6TZ6'0 898860 8ZLLEO 06860 TZE060 SO1ZLO0 DOTON
SEPL0 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
861200 86LIS0 00000'T O€8PO'0 €OOLED ©860SO (p099°0 €1pS90 LIZECO 6019¥'0 LZHI90 $TTOSO L616Y'0 S6L6VO €E09S0 (78890 ds
LSLL'O 10000 100070 00 10000 10000 10000 10000 0000 10000 10000 10000 10000 10000 10000 10000
p1610°0 Z8ZS6'0 OC8Y9'0 000001 116§90 00Z160 £98160 0EZZ6'0 OISPSO PRIPED SpI96'0 10LS6'0 LOES6'0 SSZS6'0 08IS60 9ZILL'O 10
.) . . i . . .) . : ‘ : ’ ’ 1000°0
10000 10000 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 0
Ov61C0- 911890 €OOLEO 116590 000001 ZEILO SICIO0 L6090 L9ZvS'D 10EEQ0 CESIYO €BTIVO 6O8LO0 €T8YGO ST7890 LZ8BT90 og
. .) . .)) . 0000
11900 10000 10000 10000 10000 00 10000 10000 10000 100070 10000 10000 10000 10000 10000 100
00STI0- BLZS6O VBEOSO 00ZI60 ZEILEO 00000T 961680 60C6Y0 IEESSO L87z60 bSPORO BSLEED LZ9E60 BSIEE0 BEZ6RD (8EpL0 D071
0810 10000 10000 1000°0 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 10000
07200 9E1S60 LP0990 €98160 SICIO0 961680 00000'L 699660 6SO680 Z0ZZ60 SEBRRO ISETEO BS96R0 ELZL60 19680 ZOLSLC DA
) .)) .) . .) . : : ' ’ 1000°0
LYOL0 10000 10000 10000 10000 10000 10000 00 10000 100070 10000 10000 10000 10000 10000 X
0v$Z00 SISS60 £15S90 OCZZ60 PLEOYO GOCGRD 699660 00000l LHL6RO zesze0 116880 00SZEO 9996RO 6RYCED 6E6EBO LLESLO 1A
L8ZS0 10000 10000 10000 10000 10000 10000 10000 00 1000°0 10000 10000 10000 10000 10000 10000
162600 LELE60 LOZEE0 OIShg0 L9TYSD 1EESEO 6S068'0 LYL6B0 000001 89¥96°0 827180 068€6'0 6€6060 Z0ZS6'0 IpSBL'O €Z8vS°0 3
) : : : 10000 100000 10000 10000 10000 10000
09,90 10000 10000 10000 10000 10000 10000 10000 10000 00 0) : .)]
Q08200 8IS860 6019b0 bRIb60 10£€9°0 L8ITE0 T0ZT60 ZEST60 20406'0 000001 £08160 01S660 081860 SEL66'0 SI6060 8¥699°0 A
€8L60 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000
781000+ 262260 LIp190 SpI960 IS990 bSH6BO €688%°0 116880 8zZI80 €0816'0 00000 L96T60 6£816'0 ST6Z60 LSPBE'D T65580 W
) . . . : . ' : ! 10000 00 10000 10000 10000 10000
pZLLO 10000 10000 100070 16000 10000 10000 10000 10000 10000 0 . (.) .
€p610'0 899860 pZZOSO [0LS60 €87990 BSLEGD ISLT60 00STEO 068€60 015660 L96T6'0 000001 9Z€660 ZI866'0 SBSTE'0 18EOLO N
i ' ' ' : | ! l ! i 00 1000°0 10000 10000
" 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 . (;)
R%%%M ° RZLL6D L616Y0 LOESED 608LY'0 LTIEEO BSO680 999680 66060 081860 6LBIED 9TE6ED 00000'L 195860 VOLZE0 £0989°0 N
| : ! : ' i i | i ! | 10000 10000 00 10000 10000
P10 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 0) (:)
oovns.o 026860 S6L6vD SSZS60 €I8v90 BBIC60 €LZE60 68YE6'0 T0TS6O SEL66O STEZEO TIBOG 0 L9S860 000001 LPLIEO SSOLO IN
\ X ’ ! I i i i ’ I I 10000 10000 10000 00 10000
06LL°0 10000 10000 10000 10000 10000 10000 (0000 10000 10000 10000) ‘ : .)
89100~ 76060 0950 OBISE0 SIZ8Y0 BEZ680D 196£80 6€6£80 I1¥SBLO SI6060 LSYBEO §85Z6'0 YOLZ6O LPLIED 00000'L €0S6L0 d
| ‘ ' : ’ ' I l ' i l 10000 10000 10000 10000 0’0
L6S 10000 10000° 10000 10000 10000 10000 1000C 10000 10000 1000°0 . . .))
611 a.w.o COIZL'0 L7889°0 OI9LL0 LIBTOO LBEWLO TOLSLO LLESLO €ZBPSO 8p6990 T65S80 IBEOLD £0989°0 ¥S80L0 €0S6L'0 00000l 14
e J0TON ds 10 ol 001 DA 1DA 3 A W N IN IN [4:| 19

210

‘Q-dO 40} SaInseaw gl Jo Xulew uonea109 G *bi4

00 BIZ60 00SLO 6pLLO 10000 Z€COO 891L0 1L690 8SISO €Z89°0 68180 6080 98060 L61LD ¥8YO0 6L6Z0
00000'1 £59000 680200 SL810°0 86ESED- £06E10- 6LETOD ZSSZOO 09ZHO0 pBIZO0 TOSIO0- bZRIO0 £SLOOO €SETO0 0662070 61890°0-
81260 00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
€59000 000001 106690 OEI960 S6Z99°0 10Lb60 TW6E60 SBEP60 06€060 ORILE0 0SST60 8O6L6O Z6L960 O16L60 819060 91ZZLO
00SL0 10000 00 10000 10000 10000 10000 [0000 10000 10000 10000 10000 10000 10000 10000 10000
680200 106690 000001 (61SL0 €ZEEHO ZO6O'0 SI6LO G6YBLO LIPRY0 €I/8S0 €ERLO0 602290 S6Z190 €€6790 vS8ZI0 89ZOLD
6vLL0 10000 1000 00 10000 10000 10000 10000 (0000 10000 10000 10000 10000 10000 10000 10000
18100 0C1960 161SL°0 000001 LISIO0 L80060 [DOZ6O 6Z€Z60 LSEZ8O L9ZE60 ISRE60 BEIS60 ZI8V60 6LLY6O 600E60 8bLELD
10000 10000 10000 10000 00 10000 10000 (0000 10000 10000 10000 10000 10000 [0000 10000 10000
B6ECC0- S62990 €ZEEKO L1G190 000001 6Z8980 60€9S0 €0LSSD 88bISO 00SLOD 906990 TvIp90 LOTSYO 068290 STILYO VLSOO
ZEE00 10000 10000 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 [0000 10000 10000
€06S1°0- 10LK60 ZO6V90 L80060 68980 000001 €OPORD 9ELYR0 OLpZRO [08060 LT0060 16€Z60 601760 9S8L60 1vBRRO €88SLO
8910 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 10000 10000
6LET00 ZH6E60 8IY6LO 100260 6OLIS0 €OP9S0 00000l LOE660 T9RIFO 6HZ8YO 69E980 vOBRYD 06S930 OvO6RO 6ELZ80 LIGOLO
1L690 10000 10000 10000 (0000 10000 10000 00 10000 10000 10000 10000 10000 10000 10000 10000
ZSSTO0 SBEP6D 66VBL0 67€C60 COLSSO 9EH9B0 LOE660 00000t ZEIEBD bLSRRO SOBS8D L988Y0 ¥IE9YO 608680 IELIBO ISZOLO
810 10000 10000 10000 10000 10000 10000 10000 00 toppo 0000 10000 10000 10000 10000 10000
09ZPO0 06€060 LLp8YD ISCZR0 88¥ZS0 OIVZ80 Z98I0 ZEICRO 00000 Segsg0 618080 Z€8T60 96680 E90Y6D 1LLOLO 1SO¥SO
€289°0 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 (0000 10000 10000 10000
P89Z00 0BIL60 E1L8S0 LIZE6D 09SI90 10SO60 6HZSRO KLSSRO SEBS60 00000’ 680L60 9TH660 9EISED O£9660 9LYOGD 116590
68180 100000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000 10000
208100 0SSZ60 €E8L90 ISSC60 906990 LZ0060 69£980 SO8SS0 618080 680z60 000000 SBIEE0 LEZEO ZSOEEO ILEBGO vOKERO
608L°0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 10000 10000 10000
PIRI00 806,60 602290 SEIS60 TpIpO0 (66260 bOSSSO LOBSRD TE8I60 9zwe60 SSIE60 00000'T OE660 €2Z8660 60ZZ60 OLKEID
ML ¥ ¥ X ’ 10000
98060 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 10000 100070)
€5L000 260960 62190 7ZSro0 LOZSU0 601Z60 06S98'0 BZEIRO Op66R0 9E1S60 HLEZEO OIE660 00000t ¥SSSEO L2Lz60 829L9°0
: : : . . 0 10000
L6ILO 10000 10000 10000 10000 1000°0 10000 10000 10000 10000 10000 10000 10000 00 10000)
€SEZ00 O16L60 (65290 6Lrv60 068290 95860 OF96S0 6OR6S0 €O0B60 OE9660 ISOES0 €Z8660 pSSBEO 00000°L BIELSD 126690
. : : : 0 10000
PBY90 10000 10000 10000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 00 .
066200 $19060 S8290 600gK0 SZILO0 [v8SY0 6ELTRO IELIFO LU0 OLMOGO ILE860 602260 LZL260 BIELE0 000001 86L9L0
6620 10000 10000 10000 10000 10000 10000 10000 10000 10000 10006 10000 100000 10000 10000)
618900° 912200 892000 Bbifr'0 1veSo0 CRESLO L160L0 [SZOLO 1SOMSD L16SO0 VOPERD OLV6OD BZOLYO 126690 86LOLO 000OO'L
i J0TON dS D o1 201 0A 1A E| A W N N IN g 19

yan

JOTON

ds

og

201

IOA

IDA

IN

211

8] acTuaL |:| PREDICTED
% | . 4‘76 7— 4.914.76 i, : —
| | |
|

Fig. 6. Actual average values of (VG1) and values predicted by
models 1, 2, and 3.

1200

ACTUAL l:l PREDICTED

800 |- -

757 7

757

748

746

600 -

(V) VALUE

300 -

. AHhne

MODEL

Fig. 7. Actual average values of (V) and values predicted by
models 4 and 5.

212

(VG¢) VALUE

20

15 —

13.39

5
I

15.72

13.39

ACTUAL |':| PREDICTED

1331 1339

13.48

1

2

MODEL

3

Fig. 8. Actual average values of (VG,) and values predicted by
models 1, 2, and 3 for Independent segments of software.

- ACTUAL D PREDICTED
% %

MODEL

Flg. 9. Actual average values of (V) and values predicted by

models 4 and 5 for Independent segments of software.

